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ABSTRACT

X-ray free electron laser (XFEL) sources coupled to high-power laser systems offer an avenue to study the structural dynamics of
materials at extreme pressures and temperatures. The recent commissioning of the DiPOLE 100-X laser on the high energy density
(HED) instrument at the European XFEL represents the state-of-the-art in combining x-ray diffraction with laser compression, allowing
for compressed materials to be probed in unprecedented detail. Here, we report quantitative structural measurements of molten Sn com-
pressed to 85(5) GPa and �3500 K. The capabilities of the HED instrument enable liquid density measurements with an uncertainty of
�1% at conditions which are extremely challenging to reach via static compression methods. We discuss best practices for conducting
liquid diffraction dynamic compression experiments and the necessary intensity corrections which allow for accurate quantitative analy-
sis. We also provide a polyimide ablation pressure vs input laser energy for the DiPOLE 100-X drive laser which will serve future users
of the HED instrument.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
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INTRODUCTION

The ability to probe laser-compressed samples with ultra-
bright, femtosecond pulses of x rays from x- ray free electron
laser (XFEL) sources has transformed our understanding of mate-
rial behavior under dynamic compression. Indeed, there have
been a number of striking results reported from XFEL studies in
the last decade such as the observation of incommensurate host–
guest phases forming on nanosecond timescales,1,2 exotic carbon
chemistry in plastics,3,4 and the direct observation of plasticity
mechanisms in Ta.5 However, in the same time span, the number
of XFEL or synchrotron studies of non-crystalline or amorphous
materials has been comparatively sparse.6–9 This is despite the
fact that studying amorphous materials at high pressures using
laser compression and XFELs has several advantages over per-
forming similar experiments using static compression in the
diamond anvil cell (DAC). For low-Z materials, the measured
signal in static compression studies may be dominated by the
large Compton scattering contribution from the opposing dia-
monds and so a large, pressure-dependent background must be
subtracted accurately to extract the liquid scattering signal. To
reach pressures beyond 200 GPa, the sample size in static com-
pression experiments is restricted by the small (40 μm) diamond
culets necessary to generate such pressures meaning data with low
signal-to-noise ratios are typical. Furthermore, one also must
always be conscious of the potential of sample contamination
from interaction with the laser-heated diamond or pressure trans-
mitting medium.10

In contrast, dynamic compression can reach high-pressure
and high-temperature conditions with modest laser energy—For
example, 40 J of laser energy in a 10 ns pulse is sufficient to com-
press most metals to approximately 100 GPa and several thousand
kelvin. As the target package consists only of the sample of interest
and a thin ablator with low atomic number, the x-ray background
is usually negligible. In addition, since the experiment occurs on
nanosecond timescales, chemical reactions of the sample do not
have sufficient time to occur. Previous dynamic compression
studies of liquids at XFEL and synchrotrons have reported quanti-
tative measurements, but their accuracy has been hindered by
several factors such as the use of multiple detectors which are not
ideal for measuring accurate scattering intensities, limited angular
coverage6,7 or the use of a broad, asymmetric x-ray probe
spectrum.8,9,11

The capabilities of the new HED instrument at the EuXFEL
overcome these difficulties to enable high-accuracy structural deter-
mination of shock-compressed liquids. Here, we compressed ele-
mental Sn to 85(5) GPa and �3500 K and performed
structure-factor analyses which determined a liquid density of
11.56(15) g/cm3, in excellent agreement with previous shock com-
pression data. We determined the coordination number of the
liquid Sn to be 11.9(3), indicating behavior similar to a simple
liquid of hard spheres which is in excellent agreement with
quantum molecular dynamics (QMD) simulations of liquid Sn at
similar conditions.

This paper is set out to aid future users of the facility as it dis-
cusses necessary detector intensity corrections for liquid diffraction
analyses and laser energy-ablation pressure relations.

EXPERIMENTAL SETUP

The experiments were performed at interaction chamber 2
(IC2) at the HED instrument at the EuXFEL.12 A schematic of the
experimental setup is displayed in Fig. 1.

The DiPOLE 100-X laser,14 which is a diode pumped
ytterbium-based laser capable of up to 10 Hz operation, irradiated
the sample with up to 50 J of frequency doubled (515 nm) light in
a ten nanosecond pulse. The laser pulse was shaped to launch a
ablatively driven shock into the sample and compress it to high
pressures (Fig. 2). Phase plates were used to provide a temporally
stable laser spot of diameter 500, 250, or 100 μm. The laser energy
in each experiment is measured using an optic which diverts a
small portion of the laser pulse to a calorimeter outside of the

FIG. 2. Pressure determination. Experiments performed on polyimide–LiF
targets are used to benchmark hydrodynamic simulations (left) which are then
used to predict the pressure conditions reached in experiments which used
polyimide-Sn targets at identical laser energies (right).

FIG. 1. Experimental setup. The target design consists of a 50 μm thick polyi-
mide ablator bonded to a 20 μm thick Sn foil with a �1 μm glue layer.
Diffraction data from laser shock compressed Sn at an estimated pressure of 85
(5) GPa are shown. The 2D diffraction images were generated using the
HEXRD diffraction software package.13
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interaction chamber. The target package consisted of a 50 μm poly-
imide ablator which was bonded to a 20 μm poly-crystalline Sn foil
which was purchased from Goodfellow. The targets were mounted
to a Al target holder which was capable of holding up to 100
targets in a 10� 10 grid with 3 mm light entrance holes spaced
11 mm apart horizontally and 10 mm vertically. The EuXFEL deliv-
ered 18.0 keV x rays in a 50 fs pulse and the timing was adjusted
such that the target was probed before the shock wave had exited
the rear side. Two Varex 4343CT flat panel detectors were placed
in a transmission geometry above and below the path of the XFEL
beam which allowed for approximately 160� azimuthal coverage
and angular coverage between 5� and 65� two theta. These detec-
tors do not operate at the high vacuum within IC2 and so reside in
an air-pocket located inside the interaction chamber. Each detector
has a 400 μm Al filter which preferentially absorbs lower energy
x rays generated from the drive plasma relative to the higher-energy
probe beam. A line-imaging Velocity Interferometer for Any
Reflector (VISAR)15 was used to monitor the rear surface velocity
history of the samples in each experiment.

PRESSURE DETERMINATION

The IC2 uses a line imaging VISAR system to track the rear
surface velocity of dynamically compressed samples. An optically
transparent window is often bonded to the rear surface of the target
to allow for determination of the particle velocity at the sample–
window interface which is crucial for determining the peak sample
pressure reached. As the shock wave breaks out at the sample–LiF
interface, the interference fringes shift discontinuously with the
magnitude of shift related to the particle velocity in the sample. The
apparent velocity measured from the VISAR must be corrected for
the refractive index of LiF which is non-linear as a function of pres-
sure.16 Two independent VISAR legs with different velocity sensitiv-
ities are employed to remove ambiguities in determining the correct
sample/LiF velocity, and impedance matching between the sample
and LiF is used to determine the sample particle velocity, and pres-
sure state; the latter based on the known sample equation of state.17

For the Sn experiments discussed here, no confining LiF
window was used and therefore the particle velocity was not mea-
sured in each experiment. This choice of target design was made to
avoid any scattering from the LiF window from potentially affecting
the measured liquid diffraction from the Sn sample. However, the
VISAR diagnostic was able to provide accurate timing of shock
break-out for the Sn experiments which allows one to determine if
the sample was probed by the x rays when on compression or after
pressure release. The liquid diffraction data collected in the experi-
ments reported here were all on compression.

To determine the conditions reached by the Sn samples, we
performed 1D hydrodynamic simulations18 which were bench
marked by additional experiments which used polyimide-LiF
targets to accurately determined the pressure history of the polyi-
mide ablator (Fig. 2). When agreement was reached between the
experimental VISAR and the polyimide-LiF hydrodynamic simula-
tions (Fig. 2, left), a further simulation was then performed—using
the established pressure history within the polyimide—with a
polyimide-Sn target to determine the pressure history in the Sn
sample (Fig. 2, right). We used SESAME table 7770 for polyimide,

SESAME table number 2162 for Sn and SESAME table 7270 for
LiF. Given the stability of the DiPOLE 100-X laser (the pulse shape
variance shot-to-shot was negligible) and the well constrained
equations of state of polyimide and Sn at these conditions, this is a
reasonable approach of pressure determination for such experi-
ments. The simulation showed a peak pressure in the Sn sample of
85(5) GPa. We note that, as a best practice, performing comple-
mentary experiments using a LiF window would be advisable. This
would enable the measurement of Sn-LiF particle velocity histories,
allowing for a more accurate determination of pressure. Therefore,
the values reported here should be considered estimates. We do not
measure temperature in these experiments—temperature at 85 GPa
are estimated using the Sn Hugoniot from SESAME table 2162.

LASER ENERGY VS ABLATION PRESSURE

We performed a series of experiments on polyimide-LiF and
polyimide-Cu targets at a range of laser energies with both 250 and
500 μm phase plates. For a known laser energy (determined by a
calorimeter placed in the path of the drive beam), the peak pressure
in the polyimide was determined to construct an empirical laser
energy vs ablation pressure for the DiPOLE 100-X laser (Fig. 3). In
the experiments using polyimide-LiF targets (plotted using black
squares in Fig. 3), the peak pressure in the polyimide was deter-
mined by using the VISAR diagnostic and impedance matching
from the LiF window.19,20

In the experiments using polyimide-Cu targets (plotted using
red filled and red open squares in Fig. 3), the Cu pressure was
determined by fitting the diffraction pattern to a high-temperature
EOS for Cu (Refs. 21 and 22) and corresponding polyimide pres-
sure was determined from impedance matching. This empirical

FIG. 3. Polyimide pressure as a function of laser energy for 500 and 250 μm
phase plates (PPs). This relation was determined by two independent methods:
using impedance matching from VISAR traces from polyimide-LiF targets
(black); using impedance matching from Cu diffraction data from polyimide-Cu
targets (red).
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energy vs pressure relation was found to be significantly less effi-
cient than theoretical ablation scaling laws23 as it was found that
considerable laser energy is distributed outside of the main focal
spot. This additional energy was found to potentially cause damage
to adjacent targets in the holder (see the supplementary material).
To overcome this issue, targets were positioned in every other hole
on the holder to increase the distance from each other. Future
improvements to the platform will include new phase plates that do
not exhibit this issue. It is always best to determine pressure on a
shot by a direct VISAR measurement to account for shot-to-shot
errors in energy determination, sample alignment, sample metrol-
ogy, and other variations. But, the energy vs pressure relations
shown here will allow future users to design experiments for any
sample of interest and predict the conditions which can be reached
using the HED instrument.

X-RAY DIFFRACTION MEASUREMENTS

Experiments were performed during the #2740 experimental
campaign which represented a community-wide effort and the first
user experiments using the DiPOLE 100-X laser at the HED instru-
ment. A number of materials were investigated during this cam-
paign but here we restrict our discussion to shock-melting of
elemental Sn. The Sn samples discussed here were shock-
compressed and the EuXFEL pulse was timed such that each
sample was probed before the shock wave had traveled through the
entire sample. This meant that when probed by the EuXFEL x-ray
pulse, the majority of the sample existed at a uniform high-
pressure, high-temperature state with a small region ahead of the
shock wave at ambient conditions. This is observed in the diffrac-
tion images, with diffraction peaks from the compressed sample
appearing more broad and powder-like (or diffuse in the case of
liquid scattering) compared with the sharper and more textured
nature of the ambient sample (Fig. 1). The diffraction peaks from
the ambient signal agreed well with those predicted from
the β-Sn structure (space group symmetry I41/amd, a = 5.832 Å,
c = 3.181 Å) and were masked out using the x-ray analysis package
Dioptas24 to isolate the diffraction signal arising from the com-
pressed sample. Diffraction originating from the Al target holder
was also observed in some cases and was also masked out.

The detector positions and sample detector distances are pre-
cisely calibrated using a CeO2 standard with a known lattice
parameter of 5.411 Å(see the supplementary material). For quanti-
tative analysis of liquid samples, it is imperative to accurately
measure the scattering intensity, especially at high diffraction
angles. To ensure that the intensity of the liquid scattering is accu-
rate, we made several corrections which included: (i) subtracting a
“dark” image collected immediately before the experiment which
corresponded to the average readout when no x rays were present;
(ii) the linear polarization of the EuXFEL beam;25 (iii) the self
attenuation of the Sn sample, which becomes large at high diffrac-
tion angle (see the supplementary material); (iv) the absorption of
the Al filter in front of the detectors, which is a function of diffrac-
tion angle [Fig. 4(a)]. The Sn target design did not use a confining
LiF window but for experiments in which windows are used, their
contribution to the overall scattering must be considered and sub-
tracted. This correction may become significant for target designs

which use thick (500) μm windows and also samples of interest
with low atomic number. The Al filter correction was achieved by
irradiating a yttrium–aluminum–garnet (YAG) single crystal with
the EuXFEL beam to induce a fluorescence signal. The isotropic
nature of the fluorescence emission allows for the flat-fielding of
each Varex detector on a pixel-by-pixel basis [Fig. 4(b)]. These cor-
rections were found to be crucial to enable structural analysis of the
measured liquid scattering signals. The corrected intensities from
each Varex detector were summed and then the combined image
was azimuthally integrated to produce a 1D line out which was
used for structural analysis [Fig. 5(d)].

Liquid structure analysis

In run 826 of the experimental campaign, a Sn sample was
shock-compressed to a peak pressure of 85(5) GPa (Fig. 2) and

FIG. 4. Flat-fielding the Varex detectors. YAG crystal was illuminated with
EuXFEL beam to induce fluorescence emission. (a) Uncorrected image from
Varex detectors with accompanying line out. (b) Corrected image with parasitic
Bragg reflections masked out.24
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probed by the EuXFEL beam 1 ns before shock breakout at the rear
surface. The diffraction pattern shows clear evidence of liquid scat-
tering as the diffraction maxima are broad and diffuse in nature
[Figs. 5(a) and 5(b)].

The atomic structure factor is defined as

S(Q) ¼ 1þ 4πn
Q

ð1

0

[g(r)� 1]rsin(Qr)dr, (1)

where n is the average number density, r is the distance between
atoms, and g(r) is the pair distribution function. S(Q) is obtained
by scaling the diffracted intensity by the atomic scattering factor26

and normalizing it to 1 at the largest experimental Q value
[Q = 4πsin(θ)

λ where θ is the scattering angle and λ is the x-ray wave-
length]. The determined structure factor is shown in Fig. 5(c). The
g(r) function [shown in Fig. 5(d)] is related to the probability of
finding the center of an atom at a given distance from the center of
a reference atom and is useful for monitoring structural changes in
a liquid. The density of the liquid can be extracted by applying an
optimization procedure first outlined by Eggert et al.27 which mini-
mizes a figure of merit,

χ2 ¼
ðrcutoff

0

[F(r)þ 4πn]
2
dr, (2)

where F(r) ¼ 4πn[g(r)� 1] and rcutoff represents the minimum dis-
tance at which an atom may be located from another atom (nor-
mally equivalent to a value close to the atomic diameter). The
optimization varied three parameters: (i) a constant background
signal (the initial value was taken to be 0.1); (ii) the rcutoff (the
initial value was selected as 1.45 Å which is the atomic diameter of
Sn; (iii) and n (the initial value was set at 0.0578 which is equiva-
lent to 11.4 g/cm3) which is the expected density of Sn shock

compressed to 85 GPa. The parameters were updated using the
BOBYQA optimization algorithm28,29 and iterations occur until a
clear minimum in χ2 is realized.

When performing liquid structure analyses, an important
value is the choice of Qmax which defines an upper limit of Q above
which, no intensity data will be considered. As g(r) is a Fourier
transform of S(Q) an insufficiently large Qmax can cause non-
physical oscillations at low g(r), which can inhibit the success of
the liquid density optimization described in Eq. (2). In contrast, a
choice of Qmax beyond where one is confident that the intensity
corrections are valid can also introduce spurious features at low
g(r), which can also impact the accuracy of density optimization.
The experimental geometry and choice of x-ray wavelength in these
experiments allowed for data to be collected up to maximum Q
values of �9:5 Å�1. The density optimization procedure was per-
formed for a range of Qmax between 6.0 Å�1 and 9.1 Å�1 (Fig. 6).
As can be seen, there is a clear minimum in the χ2 value as a func-
tion of Qmax between 6.8 Å�1 and 8.8 Å�1 indicating that the opti-
mization procedure is stable and well behaved in this range. The
average density was determined to be 11.56(15) g/cm3, which repre-
sents a 1.3% density uncertainty from a liquid Sn sample at 85 GPa
and 3500 K. The coordination number, which represents the
average number of nearest neighbor atoms to a reference atom, can

FIG. 6. Effect of Qmax on optimization—shot 826. Density and χ2 (top) and
coordination number (bottom) as determined as a function of Qmax. The figure
of merit χ2 (red) is minimized between 7.0 and 8.8 Å�1.

FIG. 5. Structural analysis of liquid Sn—shot 826. (a) 2D diffraction image
warped into a geometric view such that diffraction rings are concentric circles.
(b) 1D integrated line out from uncorrected and corrected data. (c) Optimized
S(Q) profile. (d) Optimized g(r) profile.
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be expressed as

CN ¼
ðrmin

0

4πnr2g(r)dr, (3)

where rmin is the location of the minimum after the first peak
in g(r). The coordination number of liquid Sn as a function of
Qmax is shown in Fig. 6 and the average value within the limit of
7:0 . Q . 8:8 was determined to be 11.9(3) indicating that liquid
Sn can be described as a simple liquid at these conditions. Indeed,
QMD simulations of liquid Sn at similar conditions have reported
a coordination number of 12.0.8

Shot 831 of the experimental campaign represented a repeat
experiment of shot 826. A Sn target was again shock compressed to
a peak pressure of 85(5) GPa and probed by the EuXFEL beam
0.5 ns before shock breakout at the rear surface. The diffraction
pattern again showed clear evidence of liquid diffraction (Fig. 7).
The density was determined from the average value of individual
optimizations over a Q-range, where the figure of merit χ2 is
sufficiently minimized (7 . Q . 8:8) and was found to be 11.50
(15) g/cm3 and a coordination number of 11.9(2) (Fig. 8).

DISCUSSION

Our results demonstrate that high precision structural mea-
surements are achievable using the HED instrument at the EuXFEL
at conditions which are challenging to access via static compression
methods. The ability to measure liquid density at extreme pressures
and temperatures is promising for many scientific fields such as
planetary science. For example, understanding the density of iron-
bearing silicates as a function of pressure and the conditions of
melting are key to modeling magma ocean dynamics of rocky
planets.30

The experimental setup at the HED instrument overcomes
previous experimental difficulties experienced at other facilities,

which impacted the quality of diffraction obtained. Structure factor
and pair distribution profiles of shock melted Sn from different
dynamic compression facilities as well as quantum molecular
dynamic simulations are shown in Fig. 9. Experiments performed
at the Matter in Extreme Conditions end station (MEC) of the
Linac Coherent Light Source (LCLS) in 20177 were hindered by the
limited angular coverage as well as issues surrounding the complex
gain behavior of the Cornel-Stanford Pixel Array Detectors
(CSPADs) which created artifacts in the S(Q) data such as the
feature at 6.2 Å�1 in Fig. 9. Since 2017, the operating x-ray energy
at MEC is now up to 25 keV and there is an effort to soon field the
same Varex detectors as used in the experiments reported here.
Both improvements will dramatically improve the quality of liquid
diffraction data obtainable at this facility. Experiments performed
at the Dynamic Compression Sector (DCS) in 20218 had sufficient
angular coverage and a robust large area detector, but used a broad,
asymmetric x-ray source. While a correction was applied to these
data to account for source energy asymmetry, the correction
impacted the accuracy with which the density could be determined
and also introduced spurious features in the g(r) profiles such as
the features at 3.5 and 4.5 Å in Fig. 9. The Advanced Photon
Source (APS) (where DCS is situated) is currently undergoing an
upgrade which will mean the x-ray source will be highly

FIG. 7. Structural analysis of liquid Sn—shot 831. (a) 2D diffraction image
warped into a geometric view such that diffraction rings are concentric circles.
(b) 1D integrated line out from uncorrected and corrected data. (c) Optimized
S(Q) profile. (d) Optimized g(r) profile.

FIG. 8. Effect of Qmax on optimization—shot 831. Density and χ2 (top) and
coordination number (bottom) was determined as a function of Qmax. The figure
of merit χ2 (red) is minimized between 7.0 and 8.8 Å�1.
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monochromatic thus improving the quality of liquid diffraction
data obtainable at this facility. The data collected at the EuXFEL
overcome these experimental difficulties with the use of large-area
scintillator based detectors, a high x-ray energy (18 keV) and highly
monochromatic x-ray source (ΔEE ¼ 0:1%) to achieve S(Q) and g(r)
profiles which are in excellent agreement with those produced from
QMD simulations at similar conditions.

In summary, we have demonstrated that high quality liquid
diffraction measurements including novel density contrast measure-
ments of a sample as it melts are possible using the HED instru-
ment at the EuXFEL. Using shock compressed Sn as an example,
we reported liquid density measurements with uncertainties of
1.3% at a pressure of 85(5) GPa and �3500 K. We have discussed
the intensity corrections which are necessary for the quantitative
analysis of the liquid diffraction data, as well as the methods for
determining the sample pressure history. We have also provided a
laser energy vs polyimide ablator pressure relations which will be
useful to users planning future experiments at the facility.

SUPPLEMENTARY MATERIAL

See the supplementary material for more information on the
Varex detector calibrations; the energy deposition due to the phase
plates used and tabular forms of the data presented in Figs. 3, 6,
and 8 from the main text.
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